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SUMMARY

A semi-implicit, staggered �nite volume technique for non-hydrostatic, free-surface �ow governed by the
incompressible Euler equations is presented that has a proper balance between accuracy, robustness and
computing time. The procedure is intended to be used for predicting wave propagation in coastal areas.
The splitting of the pressure into hydrostatic and non-hydrostatic components is utilized. To ease the
task of discretization and to enhance the accuracy of the scheme, a vertical boundary-�tted co-ordinate
system is employed, permitting more resolution near the bottom as well as near the free surface. The
issue of the implementation of boundary conditions is addressed. As recently proposed by the present
authors, the Keller-box scheme for accurate approximation of frequency wave dispersion requiring a
limited vertical resolution is incorporated. The both locally and globally mass conserved solution is
achieved with the aid of a projection method in the discrete sense. An e�cient preconditioned Krylov
subspace technique to solve the discretized Poisson equation for pressure correction with an unsymmetric
matrix is treated. Some numerical experiments to show the accuracy, robustness and e�ciency of the
proposed method are presented. Copyright ? 2004 John Wiley & Sons, Ltd.

KEY WORDS: water waves; non-hydrostatic; �nite volume; vertical boundary-�tted co-ordinate; semi-
implicit; pressure correction

1. INTRODUCTION

Recently, we have proposed an improved non-hydrostatic, free-surface �ow model governed
by the incompressible Euler equations for simulating short waves with linear dispersion [1].
This model utilizes an edge-based compact di�erence scheme known as the Keller-box scheme
[2] for the approximation of vertical gradient of the non-hydrostatic pressure located at the
interfaces between layers. Such a scheme allows straightforward implementation of the zero
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pressure boundary condition at the free surface without the need for special attention at interior
points near that surface. Moreover, the discretization error is four to six times smaller than
the error of common �nite di�erences of the same order and involving the same number of
vertical grid points. As a result, accurate wave characteristics can be obtained with just one or
two vertical layers as shown in Reference [1], whereas with common di�erences at least 10–20
layers are required in order to resolve the dispersion of a short wave correctly. However, we
have formulated our method in Cartesian co-ordinates and integrated the governing equations
in time in an explicit manner. This may not be very e�cient since the applications of our
interest often involve both deep and shallow water in coastal regions. As a consequence, time
steps might become very small due to the CFL condition related to the depth. Furthermore,
because of the relatively large variation in the water depth (a few tenfold meters to a few
meters), e�cient simulations in the Cartesian framework are seldom the case.
In this paper, we have reformulated our model by employing the terrain-following co-

ordinates followed by a semi-implicit time stepping so that an e�cient and stable solution
can be obtained. However, the implementation of a compact di�erencing scheme within a
semi-implicit framework is considered to be much more complicated because of its inherent
implicitness. For example, the Keller-box scheme takes the average of the vertical momentum
equation at both the upper and lower interface of the same layer (see Equation (20) of our
paper [1]). Hence, only one layer is used supporting two degrees of freedom.‡ Combined with
the semi-implicit time stepping, this will result in a non-sparse system of equations and thus,
involve prohibitive computer time and storage. In this paper, it will be demonstrated how to
circumvent this problem.
Before we continue, a review of non-hydrostatic computing will be given below. A number

of studies have been reported since the second half of the 1990s in which the features of,
among others, time integration and co-ordinate systems in the vertical direction have been
investigated. These issues are presented from the perspective of constructing our numerical
method to follow.
The numerical solution of the Euler or Navier–Stokes equations is often obtained by means

of the fractional step procedure. Examples can be found in References [3–9]. This procedure
consists of two steps and exploits the decoupling of the pressure into hydrostatic and non-
hydrostatic parts. During the �rst step, the free-surface condition and momentum equations
without the non-hydrostatic pressure are solved. In the second step, the achieved velocity �eld
is corrected by means of the non-hydrostatic pressure of which its Poisson-like equation is
obtained by taking the divergence of the momentum equations and employing the condition of
a divergence-free velocity �eld. A di�culty with this procedure, however, is that it introduces
a splitting error, since the advection and the pressure gradient do not commute. Therefore, the
model is only �rst order accurate in time. As will be demonstrated in this paper, this a�ects
adversely the wave propagation as the waves damped signi�cantly.
A number of approaches have been proposed to eliminate or at least to reduce the splitting

error. In References [10, 11], the method of Casulli and Stelling [3] is improved by consid-
ering a correction for the water level during the second fractional step. This correction is
based on the assumption of the hydrostatic pressure in each computational cell below the

‡This will not imply overdetermination of the system of equations in our case since, the vertical velocity at the
bottom is prescribed.
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surface level. We come back to this point later. In the same step, the free-surface condition
is reconsidered to assure global mass conservation. From a computational point of view, this
improvement implies no requirement of the �rst fractional step. Hence, this method has a
reduced splitting error. An alternative is proposed by Chen [12], where the pressure Poisson
equation is �rst solved to obtain the non-hydrostatic pressure and subsequently correct the ve-
locities. Thereafter, the surface elevation followed by the velocity �eld is updated. However,
the momentum equations must be solved twice per time step, whereas usually the momentum
equations are solved once per time step as done in References [3–11].
In this paper, a projection method, known as pressure correction technique, is presented. One

of the aim of this paper is to show that this technique does not contain a splitting error and
thus enables to compute propagating waves without any damping. Some earlier publications
taking this route are [13–15]; it should be emphasized that the method of Ko�cyigit et al.
[15] is an exact 3D extension of the 2DV �ow model of Stansby and Zhou [13]. Pressure
correction methods in combination with a time-marching method are very e�cient for solving
the unsteady Navier–Stokes equations and there is a vast amount of literature available on this
subject; for an overview, see Reference [16] and the references quoted there. An important
advantage of such methods is that they are generally second order accurate in time, as has
been proved by Van Kan [17] and demonstrated in Reference [18]. While the fractional step
method is based on a full splitting of the treatment of the pressure and advection in di�erent
substeps, the pressure correction method consists of a predictor–corrector procedure between
the velocity and pressure �elds. The approach is as follows. Firstly, an estimate of the velocity
�eld is achieved by means of solving the momentum equations that contain the non-hydrostatic
pressure at the preceding time level. This is fortunate, because the surface elevation will be
directly a�ected by the non-hydrostatic pressure. Secondly, the pressure correction, i.e. the
di�erence between the new and old non-hydrostatic pressure, is computed by means of solving
the discretized Poisson equation. This equation is obtained by taking the divergence of the
discretized momentum equations and subsequently employing the incompressibility constraint.
Lastly, through the pressure correction, the intermediate velocity is corrected, resulting in a
divergence-free velocity �eld. It must be stressed that �rst the space discretization is carried out
and thereafter the pressure correction and so to obtained the discrete Poisson equation. Some
researchers �rst derived the continuous Poisson equation after which the space discretization
is applied; see References [5, 7, 8, 12, 19–21]. The consequence of this is the need to de�ne
arti�cial boundary conditions for the pressure. We come back to this issue later.
Computing non-hydrostatic, free surface �ow within an implicit framework can also be

carried out without splitting the pressure into hydrostatic and non-hydrostatic parts; this is
done in References [19–25]. Some of them, like [22–25], do not even use a fractional step
or pressure correction technique. The method as proposed in References [22, 23] is simply
based on integrating the vertical momentum equation to obtain the pressure and subsequent
substituting it in the horizontal momentum equations, after which they are solved. The vertical
velocity is determined from the continuity equation. This process is iterated until convergence.
This approach, however, is likely to su�er from instability when the vertical acceleration is
relatively strong because of the lack of direct coupling between the incompressibility constraint
and the pressure. An alternative method is presented in References [24, 25] where the free-
surface condition and the momentum equations are solved simultaneously for 2D vertical plane
problems. This approach provides a block tri-diagonal system of equations for the horizontal
velocity that can be readily solved by a direct method. Indeed, this is the case when central
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di�erences are employed for the convection terms in the x–z plane. The approach would thus
appear to be cumbersome when higher order upwind schemes are used, especially for 3D
computations.
The methods using a fractional step technique involving non-splitted pressure proposed in

the publications [19–21] are probably less e�cient than those that exploit the decomposition of
the pressure. This has been demonstrated in Reference [4]. Moreover, we think it is desirable
to bring out explicitly the role of the non-hydrostatic pressure. In fact, it is a correction to the
hydrostatic pressure and relatively small compared to the latter. Due to the splitting round-o�
errors can be avoided to a large extent and hence, the pressure gradients can be computed
more accurately.
Another point of discussion is the use of the arti�cial boundary conditions for the (non-

hydrostatic) pressure, as presented in References [3–5, 7–15, 19, 20]. In fact, for an incom-
pressible �ow no boundary conditions for the pressure are required and our method follow
here will not need them either. This feature is closely connected with the fact that there is no
equation of state. The pressure acts as a Lagrange multiplier in order to keep the �ow always
and everywhere incompressible. The issue of boundary conditions for the pressure Poisson
equation is discussed extensively in Reference [26]. Furthermore, the handling of the zero
pressure boundary condition at the free surface need to be addressed. This condition stems
from the continuity of the normal stresses at the interface between air and water (apart from
the surface tension). As a consequence, the normal velocity component at the surface can
be found only by means of the solution of its momentum equation. This approach is already
implemented in our method [1]. The usual treatment, however, is to set the non-hydrostatic
pressure in the surface cells to zero after which the normal velocity component is derived
from the continuity equation [3, 9–11, 13–15, 24]. However, we shall show that, contrary to
the former approach, the latter one will lead to an incorrect wave celerity (see also Reference
[25]).
So far, no word on time integration is said. Stable schemes can be constructed by means

of semi-implicit time stepping. For example, following Casulli [10], the horizontal gradients
in the momentum equations and the free-surface condition are discretized by the so-called
�-method, whereas the vertical viscosity terms are integrated implicitly. As a consequence,
unconditionally stability is achieved with respect to the celerity of gravity waves and ver-
tical viscosity terms. This is the approach that we shall follow and is also presented in
References [4, 12–15, 24, 25]. In Reference [8], an alternating direction implicit (ADI) scheme
is employed to obtain the hydrostatic pressure. In References [5, 7, 19–21], an explicit time
discretization is used so that the time step is restricted by the deepest part of the coastal area
or the smallest grid size.
The applications of our interest often cover areas where the bathymetry may vary rapidly

and the free surface vary as a function of time. Hence, the local water depth depends both
on the horizontal position and time. In the literature, often two co-ordinate systems in the
vertical direction are proposed, namely the Cartesian and �-co-ordinate. On the question
of whether one of these systems are preferable the last word has not yet been said. In
References [3, 5, 6, 9, 10, 12] a Cartesian mesh has been employed, whereas in References
[4, 7, 8, 13–15, 19, 22–25] the �-co-ordinate has been adopted. Our purpose here is to develop
an e�cient and accurate algorithm that enables to simulate water waves propagating from
deep water through the surf zone. We shall therefore use a vertical boundary-conforming co-
ordinate system of which the �-transformation is a special case. This system allows de�ning
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a number of layers having a uniform thickness for each layer. In this way, large horizontal
di�erences in the magnitude of bottom stresses is prevented. Moreover, the numerical error
caused by unequal vertical grid spacing near a bottom with steep slope is minimized.
It is well-known that some inaccuracies may occur in �-co-ordinates through the evalua-

tion of horizontal gradients near a steep bed and to avoid this these are calculated in physical
space following Stelling and Van Kester [27]. This has led some investigators to choose retain-
ing the horizontal pressure gradient terms in Cartesian co-ordinates; see References [13–15].
Nevertheless, we argue to take into account the curvature terms in the horizontal pressure
gradient due to �-transformation since, experiences show that these terms appear not to be
sensitive to the relative large changes in bathymetry. Other publications in this direction are
[4, 7, 8, 19].
Because of the application of vertical boundary-�tted co-ordinate system, only non-

symmetric pressure Poisson systems are involved. A remarkable claim of Lin and Li [19]
which stated that they have derived a symmetric positive de�nite Poisson matrix in spite of
the use of �-co-ordinate. The numerical solution of the Poisson equation for the pressure cor-
rection is a crucial step of the whole approach, since the overall e�ciency of the numerical
code will depend on its performance. Hence, iterative solution methods with possibly accelera-
tion techniques should be applied. Usually, the well-known e�cient and robust preconditioned
conjugate gradient method (see, e.g. Reference [16]) works �ne, if and only if the discretiza-
tion of the Poisson equation results in linear system of equations with a symmetric positive
de�nite matrix. This is the case, for instance, when the Cartesian co-ordinates are employed.
Examples can be found in References [3, 5, 6, 9, 10]. In our method and Reference [12], a
very popular Krylov subspace method is employed, namely BiCGSTAB [28], appropriate for
solving non-symmetric systems. Furthermore, we combined this solver with preconditioners
based on incomplete LU decompositions. Special attention is paid to the further optimization
of the preconditioning in terms of e�ciency and robustness. An alternative to the solution
may be a multigrid technique; this is done in References [4, 7, 8, 20]. The papers of Stansby
and Zhou [13], Zhou and Stansby [14] and Ko�cyigit et al. [15] do not indicate which iterative
method has been employed in their codes.
The outline of this paper is as follows. After formulating the mathematical model in

Section 2, we discretize the underlying di�erential equations with the �nite volume method in
Section 3. In Section 4, an extensive description of the solution procedure is given. Section 5
presents the results of three numerical experiments to assess the performance of the proposed
method in terms of accuracy, robustness and e�cieny. We conclude this paper with drawning
some conclusions in Section 6.

2. MATHEMATICAL FORMULATION

2.1. Governing equations

We consider a two-dimensional vertical plane that is bounded by the free surface z= �(x; t)
and the bottom z=−d(x), where t is time and x and z are Cartesian co-ordinates. See
Figure 1. The extension of the approach to three dimensions is straightforward and has
been successfully tested. The primitive variables are the velocity components u, w in x- and
z-direction, respectively, and the pressure p normalized through division by a constant
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d

plane of reference H

ζ

Figure 1. Water area with free surface and bottom.

reference density. Furthermore, we split the pressure into hydrostatic and non-hydrostatic
ones, as follows:

p= g(�− z) + q (1)

so that rounding errors can be largely avoided. The quantity q denotes the non-hydrostatic
pressure and g is the acceleration of gravity. The equations of motion that are considered here
are

@u
@t
+
@u2

@x
+
@wu
@z

+ g
@�
@x
+
@q
@x
=0 (2)

@w
@t
+
@uw
@x

+
@w2

@z
+
@q
@z
=0 (3)

For the sake of clarity, we have omitted e�ects of turbulence, Coriolis force, atmospheric
pressure and baroclinic pressure gradient, because they are not needed for studying the wave
propagation. Though, simulation with these e�ects is feasible; see, e.g. Reference [9].
The equation of continuity for an incompressible �uid is given by

@u
@x
+
@w
@z
=0 (4)

By integrating Equation (4) over the water depth H = �+d and using the kinematic conditions,
given by

w|z= �= @�@t + u
@�
@x

w|z=−d=−u@d
@x

(5)
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the free-surface condition is obtained:

@�
@t
+
@
@x

∫ �

−d
u dz=0 (6)

2.2. Boundary conditions

To get a unique solution, boundary conditions are required at all boundaries of the physical
domain considered. We distinguish four type of boundaries: (i) free surface, (ii) bottom,
(iii) open and (iv) closed boundaries. Only one normal and one tangential component of the
velocity and=or stress need to be described at these boundaries. The stress that is described
on a boundary is the summation of the pressure p and the viscous stress tensor. Since, we
are dealing with irrotational �ows, the latter part of the stress will not be considered in this
paper. Since, the pressure p is a part of the stress and the fact that it is not a thermodynamic
variable, there is no need to prescribe the pressure explicitly on the appropriate boundaries.
We present the following boundary conditions for each type of boundary.

i. Free surface
The continuity of normal and tangential stresses is enforced. Concerning the tangential
stress, it equals the wind stress and is thus neglected here. The normal stress is prescribed
as follows

−p|z= �=2 �R (7)

where � is the surface tension and R is the radius of surface curvature. Usually, in the
motions of gravity waves the surface tension can be neglected. By virtue of (1), we have

q|z= �=0 (8)

It has to be stressed here that the normal velocity w at the surface is obtained by solving
its momentum equation (3). Because of the vertical gradient of non-hydrostatic pressure
occuring in that equation, one is enable to implement condition (8). Some researchers
[3, 9–11, 13–15, 24], however, assume the surface cells to be hydrostatic, i.e. q=0 inside
such cells, and accordingly the component w is determined by applying the continuity
equation (4). The side e�ect of this is a full hydrostatic computation when one layer is
taken. In case of more than one layer, it will lead to incorrect phase velocity, as will be
demonstrated in Section 5.1; see also Reference [25].

ii. Bottom
The normal velocity and the tangential stress are prescribed. The normal velocity, i.e.
w, is imposed through the kinematic condition (5). The tangential stress is the bottom
stress and neglected in our case.

iii. Open boundaries
A distinction is made between the in�ow and out�ow boundary.

• At in�ow, usually the velocities are known, i.e. the normal component equals the
incident wave celerity available from analysis or measurements. Furthermore, the
tangential velocity component is set to zero. An example can be found in Reference
[1]. Since, no momentum equations are solved at the regarding boundary, there is
no need to prescribe both the water level and non-hydrostatic pressure.
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However, in some cases, instead of the velocity, the surface elevation should be
speci�ed at the in�ow. In fact, the normal stress is prescribed. Here, it is implicitly
assumed that q=0, which is often the case. Also, the tangential stress is set to zero.

• At out�ow, the normal stress and the tangential velocity are imposed. Again, it is
assumed that near the out�ow the �ow is hydrostatic. As a consequence, the water
level is then prescribed. Often, the prescription of the water level and tangential
velocity is based on the so-called Sommerfeld’s radiation condition, which allows
the waves to cross the out�ow boundaries without re�ections. This condition is given
by

@f
@t
+ c

@f
@x
=0 (9)

where f represents the surface elevation and the tangential velocity components and
c is the wave phase velocity vector. Usually, c=

√
gH . Treatment of this type of

condition and other alternatives to absorbing-generating boundary conditions can be
found in Reference [29].

iv. Closed boundaries
Both the normal velocity and the tangential stress are set to zero. This type of boundary
conditions is also known as the free-slip condition.

3. FINITE VOLUME DISCRETIZATION

The physical domain can be discretized by subdivision of the continuum into cells of arbi-
trary shape and size. A structured grid is employed, which means that each interior cell is
surrounded by the same number of cells. Application to unstructured grids can be found in
Reference [11]. A distinction is made between the de�nition of the grid in the horizontal
and vertical direction. In the vertical direction, the computational domain is divided into a
�xed number of layers in a such a way that both the bottom topography and the free surface
can be accurately represented. This will be outlined in the next section. In the horizontal
planes, Cartesian or boundary-�tted co-ordinates can be considered. For the sake of clarity,
we restrict ourselves to the Cartesian co-ordinates. Extension to a boundary-�tted co-ordinate
system is straightforward, see, e.g. Reference [16]. A horizontal Cartesian grid containing I
cells is given by

{x | xi+1=2 = i�x; i=0; : : : ; I} (10)

with �x the length of the cell.

3.1. Vertical grid schematization

In the vertical direction, the physical domain is divided into K layers, see Figure 2. The
interface between two layers is de�ned as

zk+1=2 = zk+1=2(x; t); k=0; : : : ; K (11)

Note that z1=2 =−d and zK+1=2 = �. The layer thickness hk may be de�ned in a relative way,
i.e. a constant part of the water depth similar to the �-co-ordinate, or in an absolute way,
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k+1/2

z      =K+1/2 ζ

z    = -d1/2

z3/2

hk

zk-1/2

z

Figure 2. Vertical grid de�nition with layer interfaces.

i.e. a constant layer thickness. To make sure that the sum of the layer thicknesses equals the
water depth, as least one layer must be de�ned in a relative way. Let us consider a layer k
having a constant thickness hk . The layer interface can be computed as

zk+1=2 = zk−1=2 + hk (12)

If the layer k has a relative thickness, given by a fraction fk , then the layer interface is
determined as follows

zk+1=2 = zk−1=2 + fk (H − hc) (13)

where H =
∑K

k=1 hk and hc is the sum of all constant layer thicknesses. However, in regions
of tidal �ats it is possible that H¡hc. In such a case we set the sum of all constant layer
thicknesses exactly to half the water depth H . The remaining half of the depth is partitioned
in the same relative fashion. Thus, we have

zk+1=2 = zk−1=2 + �kH if H62hc (14)

with

�k =

{
hk=2hc if layer k has a constant thickness hk
1
2
fk if layer k has a relative thickness hk

(15)

A drying and �ooding procedure as described in Reference [30] is used to prevent the water
depth H to become negative.
The vertical grid schematization gives rise to the de�nition of the vertical velocity with

respect to the moving layer interfaces. The vertical velocity relative to layer interface zk+1=2,
denoted as !k+1=2, is de�ned as the di�erence between the vertical velocity along the streamline
and the vertical velocity along the interface, as follows

!k+1=2 =w(zk+1=2)− @zk+1=2
@t

− u(zk+1=2)@zk+1=2@x
(16)
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By virtue of Equation (5), we have

!1=2 =!K+1=2 = 0 (17)

The layer-integrated horizontal velocity de�ned as

uk =
1
hk

∫ zk+1=2

z=zk−1=2

u dz (18)

is considered as unknown. The horizontal velocity at layer interface zk+1=2, as given in
Equation (16), can be approximated, as follows:

u(zk+1=2) ≈ ukhk+1 + uk+1hk
hk + hk+1

(19)

This approximation is su�ciently accurate, since the magnitude of �rst order term is expected
to be very small. This vertical interpolation will be abbreviated by means of the over bar
notation, as follows

uzk+1=2 = u(zk+1=2) (20)

The �ow rate in x-direction can be approximated as

Qx=
∫ �

z=−d
u dz=

K∑
k=1
hkuk (21)

3.2. Location of grid variables

A staggered grid arrangement is used in which the velocity components u and w are located
at the centre of the cell faces (i + 1=2; k) and (i; k + 1=2), respectively. The water level � is
located at (i). Concerning the non-hydrostatic pressure q, two ways to assign this unknown to
grid points are employed. This variable can be given either at the cell centre (i; k) or at the
face (i; k + 1=2). The choice depends on the discretization of the vertical pressure gradient,
namely, explicit central di�erences referring as the classical case (similar to the horizontal
counterpart) and the implicit Keller-box scheme [2], respectively. Since, this paper deals
with the application to wave propagation, only the latter discretization will be considered.
The former approximation is particularly meant for applications where vertical structures are
important, e.g. strati�ed �ows with density currents and �ows over steep and rapidly varying
bottoms, see, e.g. Reference [9]. Figure 3 shows the possible arrangements of the unknowns
in the present model.
For each velocity component we de�ne a collection of a �nite number of non-overlapping

control volumes that covers the whole domain. Each velocity component is at the centre of
its control volume. Space discretization is based on the integration of the governing equa-
tions over the corresponding control volumes. The conservative property of this �nite volume
scheme is essential for the accurate calculation of higher order non-linear wave e�ects. The
approach to follow is �rst integration over a layer k using the Leibniz’ rule and thereafter,
integration over a horizontal cell area followed by the application of the Gauss divergence
theorem. Furthermore, the remaining integrals as well as integration terms containing, e.g.
time derivatives, are approximated by means of the midpoint rule.
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x
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k−1/2

u

x

z

w

q

k

k−1/2

k+1/2

i+1/2i−1/2 i

(a) (b)

Figure 3. Applied arrangements of the unknowns in a staggered grid: (a) classical
case; and (b) special case due to Keller-box scheme.

Unknowns not present at points where they are required are computed by interpolation
using the fewest number of interpolation points. So, interpolation in the vertical is indicated
by Equation (20), whereas �

x
i; k indicates arithmetic averaging of the unknown � in x-direction

over their two points of de�nition that are nearest to (i; k). In analogy, �
xz
i; k gives average value

of � at (i; k) resulted from the combination of two one-dimensional interpolation formulas in
each direction. One such interpolation formula is Equation (20).

3.3. Space discretization of the continuity equation and free-surface condition

The layer-integrated continuity equation (4) for layer 16k6K is obtained as follows:∫ zk+1=2

zk−1=2

(
@u
@x
+
@w
@z

)
dz=

@hkuk
@x

− u @z
@x

∣∣∣∣
zk+1=2

zk−1=2

+ wk+1=2 − wk−1=2 = 0 (22)

Although, we could have simpli�ed Equation (22) using Equation (16), i.e. removing the
term u@z=@x while adding @hk=@t and subsequent replacing wk±1=2 by !k±1=2, we intend here
not to do so. The reason for this becomes clear in Section 3.5. Next, Equation (22) is further
integrated over a horizontal cell with centre (i), giving

hi+1=2; kui+1=2; k − hi−1=2; kui−1=2; k
−uxzi; k+1=2(zi+1=2; k+1=2 − zi−1=2; k+1=2)
+uxzi; k−1=2(zi+1=2; k−1=2 − zi−1=2; k−1=2)
+(wi; k+1=2 − wi; k−1=2)�x=0 (23)

The total number of variables linked together in Scheme (23) is 6 u and 2 w. Thus, the
present discretization lead to a denser system than the usual one obtained in the Cartesian
co-ordinate system (2 u and 2 w), see, e.g. Reference [10].
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The free-surface condition (6) is discretized as follows:

@�i
@t
�x +Qx

i+1=2 −Qx
i−1=2 = 0 (24)

with the �ow rate Qx given by Equation (21).

3.4. Space discretization of the horizontal momentum equations

First, the horizontal momentum equations (2) is integrated over layer k and thereafter in-
tegrated over horizontal cell (i + 1=2). We consider the space discretization of each of the
following contributions separately: (i) time derivative, (ii) advective terms, (iii) surface level
gradient and (iv) non-hydrostatic pressure gradient.
Using the Leibniz’ rule, integration of the time derivative over layer k gives∫ zk+1=2

zk−1=2

@u
@t
dz=

@hkuk
@t

− u @z
@t

∣∣∣∣
zk+1=2

zk−1=2

(25)

The layer-integrated advective terms are obtained as follows:

∫ zk+1=2

zk−1=2

(
@u2

@x
+
@wu
@z

)
dz=

@
@x

∫ zk+1=2

zk−1=2

u2 dz

+uzk+1=2

(
!k+1=2 +

@zk+1=2
@t

)
− uzk−1=2

(
!k−1=2 +

@zk−1=2
@t

)
(26)

in which Equation (16) has been substituted. One can verify that∫ zk+1=2

zk−1=2

u2 dz= hku2k +
∫ zk+1=2

zk−1=2

(u− uk)2 dz (27)

The integral term in the right-hand side of Equation (27) is the dispersion term which is due
to the vertical non-uniformities of the �ow velocity. A common practice is to consider this
dispersion e�ect as di�usion and thus may be neglected in our case.
The surface level gradient is independent of the depth and so, integration over layer k will

not have an e�ect. On the other hand, layer-averaging of the non-hydrostatic pressure gradient
is necessary. Recall that q is de�ned at the layer interfaces. We have∫ zk+1=2

zk−1=2

@q
@x
dz=

@
@x

∫ zk+1=2

zk−1=2

q dz − qk+1=2 @zk+1=2@x
+ qk−1=2

@zk−1=2
@x

(28)

with the integral approximated by∫ zk+1=2

zk−1=2

q dz ≈ 1
2
hk(qk+1=2 + qk−1=2)= hkqzk (29)

Note that the notation of averaging in the latter term in Equation (29) di�ers from
Equation (20) because arithmetic averaging inside a layer is exact.
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Putting all the terms together, the layer-integrated u-momentum equation reads

@hkuk
@t

+
@hku2k
@x

+ uzk+1=2!k+1=2 − uzk−1=2!k−1=2

+ghk
@�
@x
+
@hkqzk
@x

− qk+1=2 @zk+1=2@x
+ qk−1=2

@zk−1=2
@x

=0 (30)

This equation is discretized in horizontal plane by integration over a control volume centred
at u-point. Using the Gauss divergence theorem and subsequently the midpoint rule, this gives

@hi+1=2; kui+1=2; k
@t

�x + uxi+1; k�i+1; k − uxi; k�i; k

+(uzi+1=2; k+1=2!
x
i+1=2; k+1=2 − uzi+1=2; k−1=2!x

i+1=2; k−1=2)�x

+g(�i+1 − �i)hi+1=2; k + hi+1; kq zi+1; k − hi; kq zi; k
−qxi+1=2; k+1=2(zi+1; k+1=2 − zi; k+1=2)
+qxi+1=2; k−1=2(zi+1; k−1=2 − zi; k−1=2)=0 (31)

with �= hu the cell-face value. Note that four pressure points are linked together in Equation
(31). Further approximation is needed with respect to the cell-face values. In the literature,
often higher order upwind schemes with or without �ux limiting are adopted for approximat-
ing cell-face values (see, e.g. Reference [16]). Here, central di�erences are used since, no
instabilities are encountered in our numerical experiments. For example, central di�erencing
of �i; k is obtained by means of linear interpolation in the following way

�i; k = 1
2(�i−1=2; k + �i+1=2; k) (32)

Note that Equation (31) describes a momentum balance and thus guarantees conservation of
momentum.

3.5. Space discretization of the vertical momentum equation

In the present paper, we discretize the momentum equation for the vertical physical velocity
w instead of the relative vertical velocity ! that arise from the vertical grid schematization.
The reason for this is to keep the formulation and thereby the discretization simple. Because
the pressure correction technique will be employed, to be discussed in Section 4.1, it becomes
clear why to retain the vertical physical velocity in the continuity equation (23).
Integration is carried out over a control volume of wi; k+1=2. Since, the unknown wi; k+1=2

is de�ned in its location the vertical integral of that unknown over the control volume is
evaluated using the midpoint rule:∫ zk+1

zk

wi; k+1=2 dz= hi; k+1=2wi; k+1=2 with hi; k+1=2 =
1
2
(hi; k + hi; k+1) (33)

We consider a layer k bounded by the interfaces zk−1=2 and zk+1=2. The intention is to
use the Keller-box scheme [2] for an accurate discretization in the vertical. The concept
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of this box scheme consists of two steps. Firstly, we discretize the w-momentum equation
at zk−1=2 in which the pressure gradient @q=@z is approximated through forward di�erencing
and subsequent the w-momentum equation at zk+1=2 where the approximation of @q=@z is
obtained by means of backward di�erencing. Secondly, we take the average of the discretized
w-momentum equations at zk−1=2 and zk+1=2 onto the layer k.
The layer-integrated w-momentum equation can be derived in exactly the same manner as

done for the u-momentum equation except for the pressure gradient, and is given by

@hk+1=2wk+1=2
@t

+
@hk+1=2uzk+1=2wk+1=2

@x
+ wzk+1!

z
k+1 − wzk!z

k +
∫ zk+1

zk

@q
@z
dz=0 (34)

It should be noted that the interpolation of w in the vertical advective term is simply arithmetic
averaging and thus equivalent to central di�erences. Next, the integral of pressure gradient is
approximated by means of backward di�erencing, as follows:

∫ zk+1

zk

@q
@z
dz= q(zk+1)− q(zk) ≈ qk+1=2 − qk−1=2 (35)

The w-momentum equation at interface zk−1=2 is obtained from Equation (34) by decreasing the
indices by 1. However, the integral of pressure gradient is evaluated using forward di�erencing.
This gives

∫ zk

zk−1

@q
@z
dz= q(zk)− q(zk−1) ≈ qk+1=2 − qk−1=2 (36)

Finally, we take the average of the w-momentum equations at interfaces zk−1=2 and zk+1=2 and
thereafter, we integrate the resulting equation over a cell face centred at w-point and employ
the Gauss divergence theorem and subsequently the midpoint rule, giving

1
2

(
@hi; k+1=2wi; k+1=2

@t
+
@hi; k−1=2wi; k−1=2

@t

)
�x

+1
2[(Lx)i; k+1=2 + (Lx)i; k−1=2]

+1
2 [w

z
i; k+1!

z
i; k+1 − wzi; k−1!z

i; k−1]�x

+(qi; k+1=2 − qi; k−1=2)�x=0 (37)

with

(Lx)i; k+1=2 = uzi+1=2; k+1=2hw
x
i+1=2; k+1=2 − uzi−1=2; k+1=2hw

x
i−1=2; k+1=2 (38)

It must be emphasized that Equation (37) is solved for layers 26k6K , i.e. including the
free surface and excluding the bottom. Condition (8) can be readily incorporated in Equation
(37) for k=K as qi;K+1=2 = 0. At the bottom (k=1), the kinematic condition (5) is imposed.
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4. SOLUTION PROCEDURE

The space discretization yields systems of ordinary di�erential equations for which the solution
can be found by means of time integration. In this paper, time integration de�nes the shift
from time level n to level n + 1 in two steps, namely the hydrostatic and non-hydrostatic
steps. In both steps, a projection method is applied. In order to explain this procedure more
clearly, we consider the systems of time-dependent equations after spatial discretization of
(6), (4), (2) and (3), as follows:

d�i
dt
+
�Qi
�x

= 0; Qi=
K∑
k=1
hi; kui; k (39)

�ui; k
�x

+
�wi; k
�z

= 0 (40)

dui; k
dt

+ g
��i
�x
+
�qi; k
�x

= Fu (41)

dwi; k
dt

+
dwi; k−1
dt

+ 2
�qi; k
�z

= Fw (42)

where Fu and Fw are linear algebraic operators arising from the space discretization of the
convective terms occuring in equations for ui; k and wi; k , respectively, and �=�x and �=�z are
linear algebraic operators representing the gradients in x- and z-direction, respectively. Due
to the use of the Keller-box scheme, Equation (42) contains two time derivatives for w. It
must be stressed that the solution algorithm to follow does not rest on the choice of the type
of grids and space discretizations and hence, the set of equations (39)–(42) is useful as a
starting point. Note also the omission of half-indices. Instead, we employ the so-called group
index convention: �-point (i), u-point (i+1=2; k) and w- and q-point (i; k +1=2) within each
cell have the same group index (i; k).
Time discretization takes place by explicit time stepping for convection terms and semi-

implicit time stepping using the �-scheme for both surface level and pressure gradients as
well as the free-surface condition, as follows:

�n+1i − �ni
�t

+ �
�Qn+1i

�x
+ (1− �)�Q

n
i

�x
=0 (43)

�un+1i; k

�x
+
�wn+1i; k

�z
=0 (44)

un+1i; k − uni; k
�t

+ g
(
�
��n+1i

�x
+ (1− �)��

n
i

�x

)
+ �

�qn+1i; k

�x
+ (1− �)�q

n
i; k

�x
=Fnu (45)

wn+1i; k − wni; k
�t

+
wn+1i; k−1 − wni; k−1

�t
+ 2

(
�
�qn+1i; k

�z
+ (1− �)�q

n
i; k

�z

)
=Fnw (46)

For stability, 126�61. Hence, the time step is not limited by the wave celerity. Note that this
approach is conditionally stable due to the explicit discretization of the convective terms.
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To obtain the solution of the system of equations (43)–(46), we �rst proceed the outline
of the non-hydrostatic step in Section 4.1 and thereafter the hydrostatic step in Section 4.2.
In Section 4.3, the overall solution algorithm will be presented.

4.1. Non-hydrostatic step

First, we consider the non-hydrostatic step, which is based on the pressure correction method
(see, e.g. References [16, 17] for details and further references). The essence of the pressure
correction algorithm is that Equations (44)–(46) are not solved as they stand, but �rst a
prediction for the intermediate velocity �eld (u∗

i; k ; w
∗
i; k) is computed from that system with

the non-hydrostatic pressure at the previous time level:

u∗
i; k − uni; k
�t

+ g
(
�
��∗i
�x

+ (1− �)��
n
i

�x

)
+
�qni; k
�x

= Fnu (47)

w∗
i; k − wni; k
�t

+
w∗
i; k−1 − wni; k−1

�t
+ 2

�qni; k
�z

= Fnw (48)

Equation (48) constitutes a set of bi-diagonal system of equations with unknowns w∗
i; k ,

k=1; : : : ; K , of which the solution can be found in one step. Note that Equation (47) in-
cludes the non-hydrostatic pressure term known from previous time step. Solution of this
equation combined with

�∗i − �ni
�t

+ �
�Q∗

i

�x
+ (1− �)�Q

n
i

�x
=0 with Q∗

i =
K∑
k=1
h∗
i; ku

∗
i; k (49)

for the intermediate water level �∗i is characterized as the hydrostatic one and will be given
in Section 4.2.
During the non-hydrostatic step, a pressure correction �qi; k ≡ qn+1i; k − qni; k is calculated. To

�nd the corresponding correction equation, �rst Equations (47) and (48) are subtracted from
Equations (45) and (46), respectively, resulting in

un+1i; k − u∗
i; k

�t
+ g�

(�n+1i − �∗i )
�x

+ �
��qi; k
�x

= 0 (50)

wn+1i; k − w∗
i; k

�t
+ 2�

��qi; k
�z

= −w
n+1
i; k−1 − w∗

i; k−1
�t

(51)

In order to close the system, we neglect the di�erence �n+1i − �∗i . This implies that the inter-
mediate water level will not be corrected. Results of the test cases in this paper reveal that
this neglect does not deteriorate the temporal accuracy.
The �rst term in the right-hand side of Equation (51) is merely due to the application of

the Keller-box scheme and will complicate the solution technique for K¿1 since, it implies
the strong coupling of the unknowns wi; k′ with k ′=1; : : : ; k − 1. As a consequence, a dense
matrix will involved and the use of iterative methods may be impractical. However, we shall
demonstrate that the di�erence wn+1i; k−1 − w∗

i; k−1 can be neglected under certain circumstances.
The horizontal and vertical velocity components are related to the horizontal and vertical
displacement of a �uid particle, respectively. The orbital motion is elliptic of nature. In very
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Figure 4. Normalized wave celerity vs relative depth for linear dispersion. Non-hydrostatic model based
on Keller-box scheme with two layers (circles), exact (solid line), relative error (dashed line). The
quantities c and c0 =

√
gH are the wave phase velocity and the long wave celerity, respectively, and

the relative error is |ccomputed − cexact|=cexact.

deep water, the orbit becomes a circle and the horizontal and vertical velocities are equally
signi�cant. According to linear wave theory, the elliptical orbits progressively become more
horizontally stretched with decreasing depth. Hence, it is plausible that the di�erence wn+1−w∗

at layer interface k−1=2 is an order of magnitude smaller than that at layer interface k+1=2,
particularly when two or three layers are adopted. Therefore, we shall neglect the di�erence
wn+1i; k−1 − w∗

i; k−1 in Equation (51). Based on a rigorous numerical analysis, it appears that
this neglect does not a�ect the modelling of linear dispersion (see also the explanation in
Section 5 and Figure 4).
To sum up, the correction equations are now

un+1i; k − u∗
i; k

�t
+ �

��qi; k
�x

=0 (52)

and

wn+1i; k − w∗
i; k

�t
+ 2�

��qi; k
�z

=0 (53)

Substitution of Equations (52) and (53) into Equation (44) gives a Poisson equation for the
pressure correction �qi; k . Once �qi; k is obtained, we can calculate un+1i; k and wn+1i; k , respectively,
through Equations (52) and (53). This velocity �eld is divergence-free.
Let denote the discretized divergence matrix, achieved from (44), by D and the discretized

pressure gradient matrix, derived from (52) and (53), by G. Furthermore, the pressure cor-
rection and the intermediate velocity vectors are indicated by �q̃ and ṽ∗, respectively. Then,

Copyright ? 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2005; 48:169–197



186 M. ZIJLEMA AND G. S. STELLING

the Poisson equation is symbolically written as

DG�q̃=
Dṽ∗

��t
(54)

In fact, the matrix DG is a discrete Laplacian. Note that factor 2 in Equation (53) is incor-
porated in matrix G. Due to the use of the vertical boundary-�tted co-ordinate system, this
matrix in three dimensions contains 20 non-zero diagonals§ and is non-symmetric. Almost
all of the computational e�ort to complete a time step goes into solving Equation (54), so it
pays to do this e�ciently. Here, we adopt the BiCGSTAB method [28]. Since, preconditioning
techniques can change the spectrum of the pressure system in a way that is favourable for fast
convergence, the BiCGSTAB algorithm is therefore preconditioned. A very successful class
of preconditioning methods consists of incomplete LU factorizations. Well-known examples
are the ILU preconditioner as described in Reference [31] and the MILU (Modi�ed ILU)
preconditioner of Gustafsson [32].
A number of issues are addressed with respect to further optimization of the convergence

rate of the employed solver in non-hydrostatic computing.

• It is common to use the reduction of the residual as a stopping criterion, because the
BiCGSTAB method requires calculation of the residual. When solving the system Ax= b,
after m iterations we have an approximate solution xm and the residual rm= b − Axm
is related to the convergence error em= x − xm by Aem= rm, so the reduction of the
residual results in the reduction of the convergence error. Concerning the precondi-
tioned system, however, it is better to solve AU−1L−1y= b and x=U−1L−1y instead
of U−1L−1Ax=U−1L−1b, because then the termination criterion does not depend on the
preconditioner, i.e. rm is not in�uenced by U−1L−1. The iteration process stops at each
time step if the ratio of the 2-norm of the residual and of the right-hand side is less than
a given accuracy: ‖rm‖2=‖b‖2¡�, with � in the order of 10−2. In this way, the number
of iterations depends on the initial estimate x0. If the iteration process is started with an
accurate estimate, the number of iterations is less than using an inaccurate start vector.
A good choice for the starting vector appears to be the solution from the previous time
step.

• It is well-known that an average of the ILU and MILU preconditioner may improve the
rate of convergence [33]. Based on several numerical experiments, an optimum in the
convergence rate is found by taking 55% of MILU and 45% of ILU.

• It has been observed that the pressure correction is slowly time varying. This means that
there is no need for the system of equations (54) to be preconditioned at every time
step. Since preconditioning is relative expensive with respect to amount of work, much
of CPU-time can be saved by preconditioning the system every ten to twenty time steps,
as suggested by our experiments.

• The matrix DG may contain a number of positive o�-diagonal elements. So, there is
no guarantee that the preconditioner can be constructed through the incomplete LU de-
composition of DG (see Reference [31]). To overcome this di�culty, a matrix P is
constructed by which each positive o�-diagonal element of DG is lumped into the main

§The three-dimensional stencil of DG is composed of four horizontal slices with each �ve-point star.
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diagonal after which its position is �lled with zero. As a consequence, the ILU factor-
ization of P exists and can be used as a preconditioner for system (54). A disadvantage,
however, is that this so-called lumped matrix needs to be stored in memory. Fortunately,
our experiments show that the preconditioner of the lumped matrix is not only robust
but it also leads to faster convergence in many cases (up to 30–50%).

• In the case with a single layer (K =1), one observes that Equation (54) reduces to a
standard �ve-point discretization of the Laplacian and hence, the pressure matrix DG be-
comes a non-symmetric �ve-diagonal one. This special case can be solved very e�ective
by means of the strongly implicit procedure (SIP) of Stone [34]. This method constructs
an incomplete lower–upper factorization that has the same sparsity as the original matrix.
Afterward, the resulting system is solved in an iterative manner by forward and back-
ward substitutions. Although, this iterative process generally required more number of
iterations per time step than the preconditioned BiCGSTAB solver, the amount of work
per iteration is much lower and on balance, the SIP solver is faster than the BiCGSTAB
method. Though, convergence is not guaranteed, like the BiCGSTAB method, the SIP
solver often has a very regular convergence behaviour and it rarely breaks down.

• It is well-known that data in the cache can be accessed faster than from conventional
memory. In this respect, the matrix DG should be stored as a three-dimensional array
with structure dg(1:20,1:kmax,1:mnmax) and not dg(1:mnmax,1:kmax,1:20), which
may be usual in the Fortran programming. The integer mnmax represents the total number
of wet points in the horizontal plane and kmax equals the total number of layers. The
former structure will deliver one block for the matrix elements in the cache, whereas
the latter will give 20 blocks. Moreover, it is advantageous to correspond the innermost
loop with the �rst index, which varies most rapidly. This is known for vector computers
but it applies to cache hit as well.

Since, we are dealing with the Poisson equation for the pressure correction we should expect
to need boundary conditions for the unique solution, whereas no physical boundary conditions
for the pressure are required. Fortunately, the boundary conditions for the momentum equations
restrict in some sense the matrix G at the boundary, and in this way they implicitly de�ne
boundary conditions for the pressure correction equation. For example, if the normal velocity
is described at a boundary then no momentum equation for this velocity component need to
be solved and hence, the gradient matrix G contains no virtual pressure points. This results
in a matrix DG that may be interpreted as the normal gradient of pressure given at that
boundary. If, on the other hand, the normal stress is prescribed then again G contains no
virtual points since, the pressure is a part of that stress. Hence, at the boundary in question,
this results in a Laplacian molecule with Dirichlet boundary condition. However, one di�culty
arise with respect to the matrix D. Because of the vertical boundary-conforming co-ordinate,
this matrix contains some virtual velocity points near the free surface and the bottom. In our
implementation, all these virtual velocity unknowns are expressed in unknowns in the interior
by means of linear extrapolation. To sum up, the discrete operator DG given by Equation
(54) works exclusively on pressure values in grid points in the interior of the domain.

4.2. Hydrostatic step

During the hydrostatic step, Equations (49) and (47) need to be solved. Analogous to the
pressure correction method, �rst an estimate u∗∗

i; k for the velocity u
∗
i; k is computed from
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Equation (47) with the water level obtained from the previous time step:

u∗∗
i; k − uni; k
�t

+ g
��ni
�x
+
�qni; k
�x

=Fnu (55)

Next, a correction to the water level, de�ned as ��i ≡ �∗i − �ni , is applied to achieve the
velocity u∗

i; k . The equation for u
∗
i; k is obtained by substracting Equation (55) from Equation

(47) which yields

u∗
i; k − u∗∗

i; k

�t
+ g�

���i
�x

=0 (56)

Multiplication of Equation (56) with h∗
i; k and then summing it from the free surface to the

bottom gives

Q∗
i =

K∑
k=1
h∗
i; ku

∗∗
i; k − g��tH ∗

i
���i
�x

with H ∗
i =

K∑
k=1
h∗
i; k (57)

A discretized equation for ��i is constructed by substituting Equation (57) into Equation
(49), giving

��i
�t

− g�2�t �
�x

(
H ∗
i
���i
�x

)
= − � �

�x

(
K∑
k=1
h∗
i; ku

∗∗
i; k

)
− (1− �)�Q

n
i

�x
(58)

which forms a tri-diagonal system of equations in the 2DV framework or a penta-diagonal
system in the three-dimensional case. However, this system is non-linear, since the layer
thickness h∗

i; k and therefore the water depth H
∗
i depends on the water level �

∗
i . Hence, lin-

earization is required and the sequence of steps (55), (58) and (56) must be repeated until a
converged result is obtained. Thus, the iteration process is going from s=1 to s= S and the
system (58) is linearized by freezing h∗

i; k and H
∗
i at iteration level s−1. For accuracy reason,

S¿1. The iteration process stops if ‖(u∗
i; k)

s − (u∗
i; k)

s−1‖∞¡�, where � is usually of the order
10−4. A theory of convergence is not available. The linearized system of equations for the
water level correction can be solved by means of a direct method and the SIP method [34] in
the case of two and three dimensions, respectively. It should be noted that many researchers
([3, 9, 10, 12–15, 19, 24]) replace h∗

i; k in Equation (49) by h
n
i; k . Hence, in their case there is

no need for an iteration process to obtain the new water level, i.e. S=1, but it is probably
less accurate.

4.3. Overall algorithm

The sequence of the computation for a time step can be summarized as follows. First, the
hydrostatic step is carried out, during which the free surface level �n+1 and the intermediate
horizontal velocity u∗ are updated.

1. Start the sequence by guessing the unknowns �n, un, wn, qn, either initially or from the
previous time level.

2. Solve the momentum equation (55) to obtain u∗∗.
3. Solve Equation (58) to obtain the correction �� for water level.
4. Correct the water level and horizontal velocity by means of �∗= �n+��, Equation (56)
for u∗.
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5. Repeat steps 2, 3 and 4 until convergence.
6. Set �n+1 = �∗.

Then, during the non-hydrostatic step, both the velocities u∗ and w∗ as well as the non-
hydrostatic pressure are adjusted in order to ful�l the local continuity equation. With this, the
�nal velocity �eld (un+1,wn+1) and non-hydrostatic pressure qn+1 is achieved.

7. Solve the momentum equation (48) to obtain w∗.
8. Solve the pressure correction equation (54) to obtain the correction �q.
9. Update the non-hydrostatic pressure and velocities using qn+1 = qn +�q, Equation (52)
for un+1 and Equation (53) for wn+1.

10. Update the relative vertical velocity !k+1=2 from Equation (16).

It should be noted that the present model is also able to simulate fully three-dimensional
hydrostatic �ows in an e�cient manner by means of a switch such that only steps 1 to 6
will be carried out followed by the determination of the relative vertical velocity !k+1=2 via
the layer-integrated continuity equation (derived from Equation (22) using Equation (16)):

!k+1=2 =!k−1=2 − @hk
@t

− @hkuk
@x

; 16k6K; !1=2 = 0 (59)

Moreover, the non-hydrostatic pressure is initially set to zero. As a consequence, qn ≡ 0 at
every time step and the �nal solution for the horizontal velocity is un+1 = u∗.

5. RESULTS

Results have been obtained for standing wave in closed basin, wave over submerged bar and
over circular shoal. The computations were carried out on a 2.0 GHz Pentium-4 Intel PC with
2GByte internal memory.
The �rst test case is included to establish the superior accuracy obtained by the proposed

method using the pressure correction technique and the correct implementation of the zero
pressure condition at the free surface.
Our main interest concerns the simulation of transformation, refraction and di�raction of

non-linear waves over rapidly varying bathymetry in coastal zones. The present method using
the Keller-box scheme is validated by applying it to the second and third test cases for which
experimental data exist. Performance of the method with respect to reliability and cost is
examined. With respect to the time integration employing the �-method, �= 1

2 is chosen in
both these cases. Concerning the range of applicability of the model to values of kH , with k
the wave number, indicating the relative importance of linear wave dispersion, results of our
numerical analysis, as depicted in Figure 4, suggest that two layers are su�cient to compute
linear dispersive waves up to kH610 with a relative error of at most 4%. Hence, only two
layers are therefore taken in the considered numerical experiments.

5.1. Standing short wave in closed basin

The objective of this section is twofold. Firstly, we demonstrate the superior accuracy of the
pressure correction technique, as treated in Section 4.1, in comparison with the fractional step
approach as presented in, e.g. Reference [10]. Secondly, the consequence of the assumption of
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hydrostatic pressure in the surface cells is explored. For this purpose and for an appropriate
comparison, we consider the classical case in which the non-hydrostatic pressure is located at
the cell centre (cf. Figure 3a) and the vertical pressure gradient @q=@z is approximated with
explicit central di�erences instead of the Keller-box scheme (see, e.g. Reference [9]). As a
consequence, Equations (48) and (51) are replaced by, respectively,

w∗
i; k − wni; k
�t

+
�qni; k
�z

=Fnw (60)

and

wn+1i; k − w∗
i; k

�t
+ �

��qi; k
�z

=0 (61)

For comparison reason, the fractional step approach, as formulated in Reference [10], will be
constructed by carrying out the following changes in our model:

• replace �qni; k =�x in Equation (47) by (1 − �)�qni; k =�x and �qni; k =�z in Equation (60) by
(1− �)�qni; k =�z (these correspond to Equations (12) and (14) in Reference [10]), and

• replace �qi; k in Equations (52) and (61) by qn+1i; k (these correspond to Equations (20)
and (22) in Reference [10]).

Note that the numerical model of Casulli and Stelling [3] is a special case obtained with
�=1:0. Contrary to the method of Casulli [10], we do not correct the intermediate water level
during the second fractional step. Hence, an error is made. However, we shall demonstrate that
this error does not deteriorate the temporal accuracy. Finally, we solve the Poison equation
given by Equation (54) with �q̃ replacing by q̃n+1. Note that the corresponding system of
equations is not equivalent to the set of equations (27)–(28) in Reference [10] since, no
special measures with respect to the surface cells were taken in our case.
We consider a standing wave in a closed basin with length of 20 m and depth of 10 m.

Initially, the following wave height is taken

�=0:1 cos
(	x
10

)
; 06x620 (62)

The basin is divided horizontally into 20 grid cells of each 1m, while the depth consists of 10
layers. The time step is taken as 0:1 s. See also Reference [1] for further details. We compare
the computed time series of the surface elevation at x=17:5m obtained with the fractional
step and the pressure correction approaches. We also plot the exact solution of the wave
following from the linear wave theory. Two di�erent temporal discretizations were employed
namely, Crank–Nicolson (�=0:5) and backward Euler (�=1:0). The results are depicted in
Figure 5. We have found a signi�cant damping of the wave height in the fractional step
framework, even when the Crank–Nicolson scheme is applied. Nevertheless, the computed
propagation speed has not been a�ected by this approach. The use of the pressure correction
method yields much more accurate waves, in which the amplitude is hardly changed. It must
be stressed that the error due to the neglect of �n+1i − �∗i in Equation (50) appears to be much
smaller than the splitting error of the fractional step approach.
Another point of discussion is the implementation of the zero pressure boundary condition

at the free surface. Our implementation consists of solving the momentum equation for the
vertical velocity w (3) at the free surface. This will introduce virtual pressure points near the
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Figure 5. Comparison between computed and exact time series of surface elevation at
x=17:5 m for standing wave in closed basin. Fractional step method (solid line), pres-
sure correction technique (dashed line), exact (circles). Time integration is done with both

Crank–Nicolson (�=0:5) and backward Euler (�=1).

free surface that can be readily eliminated by means of a linear extrapolation using condition
(8). The usual treatment, however, as presented in References [3, 9–11, 13–15, 24], is to set
q=0 inside the surface cells, and accordingly the vertical velocity w is determined by applying
the continuity equation (4). To demonstrate the e�ect of these implementations, we reconsider
the simulation of the standing wave in closed basin. Figure 6 shows this e�ect. Clearly, the
computed wave celerity due to the latter implementation is totally wrong, whereas the former
one shows almost the same propagation speed of the exact wave (see also Reference [25]).

5.2. Non-linear dispersive waves over a submerged bar

The propagation of non-breaking waves over a submerged bar with relatively steep slopes
is considered. The con�guration of Ohyama et al. [35] has been selected and is depicted in
Figure 7. The length of the wave �ume in their physical experiments is 65 m. In the deepest
part of the �ume, the still water depth is 0:5 m and is reduced to 0.15 m in the shallow
water region. Both the o�shore and onshore slope of the bar is 1:2. Surface elevations are
measured using wave gauges at �ve di�erent locations as indicated in Figure 7. Six conditions
have been considered: three di�erent wave periods T (short, intermediate and long) each
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Figure 6. Comparison between computed and exact time series of surface elevation at x=17:5m for
standing wave in closed basin. Result obtained with q=0 inside surface cells (solid line); result obtained

with non-hydrostatic pressure in surface cells (dashed line), exact (circles).
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Figure 7. Geometry of submerged bar and location of wave gauges.

with two di�erent wave heights a (small and large). In this way, e�ects of the various
degrees of dispersivity (measured by kH) and non-linearity (measured by a=H) can be studied.
Propagation of waves over the bar results in rapidly energy transfer from a primary wave
component into its higher harmonics and thus become non-linear. Furthermore, the higher
harmonics become more and more dispersive. Behind the bar the non-linearity is weak and as
a consequence, the bound waves become free and at the same time highly dispersive. Details
can be found in Reference [35]. Two of the six conditions are considered in this paper, namely
Case 2 (short, large waves) and Case 4 (intermediate, large waves). They are representatives
of the non-linear dispersive waves ocurring in coastal zones. The incident wave height in the
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Figure 8. Computed wave pro�les at two stations compared to the measured ones of Case 2 for the
wave over submerged bar. Present method (solid line), experiment (circles).
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Figure 9. Computed wave pro�les at two stations compared to the measured ones of Case 4 for the
wave over submerged bar: present method (solid line); experiment (circles).

regarded cases is a0 = 0:05m. The incident wave period for Case 2 is T0 = 1:34s and for Case
4 T0 = 2:01 s. According to the linear wave theory, k0H0 is 1.30 and 0.77 in Cases 2 and 4,
respectively (H0 = 0:5 m).
The horizontal mesh size is set to �x= 
0=50 with 
0 the incident wave length, and the

time step is taken as �t=T0=100. Comparison between the model results and the experimen-
tal data is considered in both the shallow water region (Station 3) and deep water region
(Station 5). Figure 8 displayed the time series of the surface elevation at both stations for
Case 2. The measured pro�les are very well predicted by the present non-hydrostatic model.
Note that the model slightly underestimates the wave energy behind the bar. Wave pro�les at
Stations 3 and 5 for Case 4 are plotted in Figure 9. Again, the present method reproduces the
experimental results at Station 3 considerable well. Clearly, behind the bar the higher harmon-
ics are underestimated by the model. This discrepancy may be reduced by employing a �ner
horizontal mesh. Nevertheless, the quality of these results is better than that of the results
obtained with an extended Boussinesq-type wave model as presented in Reference [35]. This
is due to the steep bottom slopes which violates the inherent mild-slope assumption of the
latter model. Earlier non-hydrostatic calculation related to this case has been carried out by
Zhou and Stansby [14], where 20 �-layers have been used. Compared to the present results,
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it appears that their results are less accurate. This may be due to insu�cient mesh resolution
in their computations.
To give an impression of the performance of the present method, information on the com-

puting times will be given. The stopping criterion for the solution of the pressure correction
is set to �=0:01 and for the outer iteration process is �=5× 10−4. It appears that only 1
iteration per time stap was needed for the solution of the Poisson equation and typically three
outer iterations were taken. The total CPU time needed for each time step and grid point was
approximately 15�s of which 35% is consumed by the building (18%) and solving (17%) of
the Poisson equation.

5.3. Deformation of waves by a submerged circular shoal

In this section, we compare numerical results from a computation of wave transformation over
a submerged circular shoal in a three-dimensional con�guration with measured data from a
physical experiment. The experimental data are taken from Reference [36]. Earlier computation
related to this problem has been carried out by Chen et al. [37] using an extended Boussinesq
wave model. To authors’ knowledge, no results obtained with a non-hydrostatic free-surface
�ow model for this test case have been published earlier. Based on the con�guration of Ref-
erence [36], the simulation is considered in a rectangle basin [(x; y) : 06x622:0; 06y618:2]
with a �at bottom on which a circular shoal is rested. The experimental layout is depicted in
Figure 10 where wave heights along seven transects near the shoal, A to G, were measured.
The still water depth is H0 = 0:45 m and the depth on the shoal is given by

H =H0 + 8:73−
√
82:81− (x − 5)2 − (y − 8:98)2 (63)

The shape of the shoal is represented by

(x − 5)2 + (y − 8:98)2 =6:6049 (64)
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Figure 10. Sketch of basin with circular shoal and transects for collecting wave data.
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Figure 11. Computed (solid line) and measured (circles) normalized wave heights along sections
A, B, D and E for the wave over circular shoal.

Only non-breaking waves are considered in the present computation. Monochromatic waves
with wave height of a0 = 1:18cm and wave period of T0 = 1:0s are generated at left boundary.
The right boundary is of the out�ow type where the Sommerfeld’s radiation condition (9)
is applied. The lower and upper boundaries are insulated and the free-slip conditions are
imposed.
The grid size in both directions is set to 0:02 m. The time step is taken as 0:01 s and

the simulation period is set to 40 s, so that a steady state is reached. No instabilities were
encountered. It turns out that on average 2 iterations per time step for the pressure correction
(�=0:01) and approximately 50 CPU hours on the 2:0 GHz Pentium machine were required.
Pro�les of the normalized wave height along four transects, which are the most compelling
ones, are given in Figure 11 and compared with the experimental data. The results of the
calculation are qualitatively in good agreement with the measurements, as far as they can be
represented by the present mesh. The comparison along section A indicates that both shoaling
and focussing of waves are very well predicted by the present model. Also, the variation of
the waves in cross direction representing the e�ects of combined refraction and di�raction is
predicted fairly well as shown by the comparison of the computed and measured pro�les along
sections B, D and E. It is believed that the model results can be further improved by re�ning
the grid to capture higher harmonics behind the shoal. Finally, both the present method and
the Boussinesq wave model employed by Chen et al. [37] produce similar pro�les.
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6. CONCLUSIONS

A �nite volume algorithm for non-hydrostatic, free surface �ows involving water waves gov-
erned by the incompressible Euler equations on staggered grids has been presented in detail
and validated by reference to experimental data. This algorithm made use of a boundary-
conforming co-ordinate system in the vertical. This co-ordinate change allows a number of
layers having a uniform constant thickness for each layer. Furthermore, discretization in the
vertical is carried out by means of the Keller-box scheme that enables to calculate wave prop-
agation with linear dispersion e�ects accurately using a few number of layers. For accuracy
reason, the pressure is split-up into hydrostatic and non-hydrostatic parts. Semi-implicit time
stepping is done in combination with projection methods, where correction to the velocity
�elds for the change in both surface elevation and non-hydrostatic pressure is incorporated.
Moreover, space discretization precedes introduction of pressure correction, so that no arti�-
cial pressure boundary conditions are required. Accurate implementation of the zero pressure
boundary condition at the free surface is treated. No special measures are required to re-
duce splitting errors. The iterative solution of the unsymmetric Poisson equation for pressure
correction is the most time consuming part and therefore, the e�cient BiCGSTAB method
accelerated with incomplete LU type preconditioners is employed. Further reduction of CPU-
time can be realized through, notably, constructing lumped preconditioners, averaging ILU
and MILU preconditioners and preconditioning the pressure system every ten to twenty time
steps. The present scheme is su�ciently accurate and is also locally and globally mass con-
servative. Computational results have demonstrated that the proposed method is suitable for
accurate and e�cient simulation of propagation of non-linear dispersive waves over uneven
bottoms. The model can be applied in practical applications that comprise areas with spatial
dimensions of the order of 10–100 wave lengths, particularly in the vicinity of the coast. In
the near future, the model will be coupled to a spectral wave model that can be applied on
a scale of the order of 100–1000 wave lengths.
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